Internet-Draft | ietf-tls-hybrid-design | July 2023 |
Stebila, et al. | Expires 29 January 2024 | [Page] |
Hybrid key exchange refers to using multiple key exchange algorithms simultaneously and combining the result with the goal of providing security even if all but one of the component algorithms is broken. It is motivated by transition to post-quantum cryptography. This document provides a construction for hybrid key exchange in the Transport Layer Security (TLS) protocol version 1.3.¶
Discussion of this work is encouraged to happen on the TLS IETF mailing list tls@ietf.org or on the GitHub repository which contains the draft: https://github.com/dstebila/draft-ietf-tls-hybrid-design.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 29 January 2024.¶
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
This document gives a construction for hybrid key exchange in TLS 1.3. The overall design approach is a simple, "concatenation"-based approach: each hybrid key exchange combination should be viewed as a single new key exchange method, negotiated and transmitted using the existing TLS 1.3 mechanisms.¶
This document does not propose specific post-quantum mechanisms; see Section 1.4 for more on the scope of this document.¶
RFC Editor's Note: Please remove this section prior to publication of a final version of this document.¶
Earlier versions of this document categorized various design decisions one could make when implementing hybrid key exchange in TLS 1.3.¶
draft-ietf-tls-hybrid-design-06:¶
draft-ietf-tls-hybrid-design-05:¶
draft-ietf-tls-hybrid-design-04:¶
draft-ietf-tls-hybrid-design-03:¶
draft-ietf-tls-hybrid-design-02:¶
draft-ietf-tls-hybrid-design-01:¶
draft-ietf-tls-hybrid-design-00:¶
draft-stebila-tls-hybrid-design-03:¶
draft-stebila-tls-hybrid-design-02:¶
draft-stebila-tls-hybrid-design-01:¶
For the purposes of this document, it is helpful to be able to divide cryptographic algorithms into two classes:¶
"Hybrid" key exchange, in this context, means the use of two (or more) key exchange algorithms based on different cryptographic assumptions, e.g., one traditional algorithm and one next-gen algorithm, with the purpose of the final session key being secure as long as at least one of the component key exchange algorithms remains unbroken. When one of the algorithms is traditional and one of them is postquantum, this is a Post-Quantum Traditional Hybrid Scheme [I-D.driscoll-pqt-hybrid-terminology]; while this is the initial use case for this draft, we do not limit this draft to that case. We use the term "component" algorithms to refer to the algorithms combined in a hybrid key exchange.¶
We note that some authors prefer the phrase "composite" to refer to the use of multiple algorithms, to distinguish from "hybrid public key encryption" in which a key encapsulation mechanism and data encapsulation mechanism are combined to create public key encryption.¶
It is intended that the composite algorithms within a hybrid key exchange are to be performed, that is, negotiated and transmitted, within the TLS 1.3 handshake. Any out-of-band method of exchanging keying material is considered out-of-scope.¶
The primary motivation of this document is preparing for post-quantum algorithms. However, it is possible that public key cryptography based on alternative mathematical constructions will be desired to mitigate risks independent of the advent of a quantum computer, for example because of a cryptanalytic breakthrough. As such we opt for the more generic term "next-generation" algorithms rather than exclusively "post-quantum" algorithms.¶
Note that TLS 1.3 uses the phrase "groups" to refer to key exchange algorithms -- for example, the supported_groups
extension -- since all key exchange algorithms in TLS 1.3 are Diffie-Hellman-based. As a result, some parts of this document will refer to data structures or messages with the term "group" in them despite using a key exchange algorithm that is not Diffie-Hellman-based nor a group.¶
A hybrid key exchange algorithm allows early adopters eager for post-quantum security to have the potential of post-quantum security (possibly from a less-well-studied algorithm) while still retaining at least the security currently offered by traditional algorithms. They may even need to retain traditional algorithms due to regulatory constraints, for example FIPS compliance.¶
Ideally, one would not use hybrid key exchange: one would have confidence in a single algorithm and parameterization that will stand the test of time. However, this may not be the case in the face of quantum computers and cryptanalytic advances more generally.¶
Many (though not all) post-quantum algorithms currently under consideration are relatively new; they have not been subject to the same depth of study as RSA and finite-field or elliptic curve Diffie-Hellman, and thus the security community does not necessarily have as much confidence in their fundamental security, or the concrete security level of specific parameterizations.¶
Moreover, it is possible that after next-generation algorithms are defined, and for a period of time thereafter, conservative users may not have full confidence in some algorithms.¶
Some users may want to accelerate adoption of post-quantum cryptography due to the threat of retroactive decryption: if a cryptographic assumption is broken due to the advent of a quantum computer or some other cryptanalytic breakthrough, confidentiality of information can be broken retroactively by any adversary who has passively recorded handshakes and encrypted communications. Hybrid key exchange enables potential security against retroactive decryption while not fully abandoning traditional cryptosystems.¶
As such, there may be users for whom hybrid key exchange is an appropriate step prior to an eventual transition to next-generation algorithms. Users should consider the confidence they have in each hybrid component to assess that the hybrid system meets the desired motivation.¶
This document focuses on hybrid ephemeral key exchange in TLS 1.3 [TLS13]. It intentionally does not address:¶
The primary goal of a hybrid key exchange mechanism is to facilitate the establishment of a shared secret which remains secure as long as as one of the component key exchange mechanisms remains unbroken.¶
In addition to the primary cryptographic goal, there may be several additional goals in the context of TLS 1.3:¶
Backwards compatibility: Clients and servers who are "hybrid-aware", i.e., compliant with whatever hybrid key exchange standard is developed for TLS, should remain compatible with endpoints and middle-boxes that are not hybrid-aware. The three scenarios to consider are:¶
Ideally backwards compatibility should be achieved without extra round trips and without sending duplicate information; see below.¶
Low latency: Use of hybrid key exchange should not substantially increase the latency experienced to establish a connection. Factors affecting this may include the following.¶
This document models key agreement as key encapsulation mechanisms (KEMs), which consist of three algorithms:¶
KeyGen() -> (pk, sk)
: A probabilistic key generation algorithm, which generates a public key pk
and a secret key sk
.¶
Encaps(pk) -> (ct, ss)
: A probabilistic encapsulation algorithm, which takes as input a public key pk
and outputs a ciphertext ct
and shared secret ss
.¶
Decaps(sk, ct) -> ss
: A decapsulation algorithm, which takes as input a secret key sk
and ciphertext ct
and outputs a shared secret ss
, or in some cases a distinguished error value.¶
The main security property for KEMs is indistinguishability under adaptive chosen ciphertext attack (IND-CCA2), which means that shared secret values should be indistinguishable from random strings even given the ability to have other arbitrary ciphertexts decapsulated. IND-CCA2 corresponds to security against an active attacker, and the public key / secret key pair can be treated as a long-term key or reused. A common design pattern for obtaining security under key reuse is to apply the Fujisaki-Okamoto (FO) transform [FO] or a variant thereof [HHK].¶
A weaker security notion is indistinguishability under chosen plaintext attack (IND-CPA), which means that the shared secret values should be indistinguishable from random strings given a copy of the public key. IND-CPA roughly corresponds to security against a passive attacker, and sometimes corresponds to one-time key exchange.¶
Key exchange in TLS 1.3 is phrased in terms of Diffie-Hellman key exchange in a group. DH key exchange can be modeled as a KEM, with KeyGen
corresponding to selecting an exponent x
as the secret key and computing the public key g^x
; encapsulation corresponding to selecting an exponent y
, computing the ciphertext g^y
and the shared secret g^(xy)
, and decapsulation as computing the shared secret g^(xy)
. See [HPKE] for more details of such Diffie-Hellman-based key encapsulation mechanisms. Diffie-Hellman key exchange, when viewed as a KEM, does not formally satisfy IND-CCA2 security, but is still safe to use for ephemeral key exchange in TLS 1.3, see e.g. [DOWLING].¶
TLS 1.3 does not require that ephemeral public keys be used only in a single key exchange session; some implementations may reuse them, at the cost of limited forward secrecy. As a result, any KEM used in the manner described in this document MUST explicitly be designed to be secure in the event that the public key is reused. Finite-field and elliptic-curve Diffie-Hellman key exchange methods used in TLS 1.3 satisfy this criteria. For generic KEMs, this means satisfying IND-CCA2 security or having a transform like the Fujisaki-Okamoto transform [FO] [HHK] applied. While it is recommended that implementations avoid reuse of KEM public keys, implementations that do reuse KEM public keys MUST ensure that the number of reuses of a KEM public key abides by any bounds in the specification of the KEM or subsequent security analyses. Implementations MUST NOT reuse randomness in the generation of KEM ciphertexts.¶
Each particular combination of algorithms in a hybrid key exchange will be represented as a NamedGroup
and sent in the supported_groups
extension. No internal structure or grammar is implied or required in the value of the identifier; they are simply opaque identifiers.¶
Each value representing a hybrid key exchange will correspond to an ordered pair of two or more algorithms. For example, a future document could specify that one identifier corresponds to secp256r1+Kyber512, and another corresponds to x25519+Kyber512. (We note that this is independent from future documents standardizing solely post-quantum key exchange methods, which would have to be assigned their own identifier.)¶
Specific values shall be registered by IANA in the TLS Supported Groups registry.¶
enum { /* Elliptic Curve Groups (ECDHE) */ secp256r1(0x0017), secp384r1(0x0018), secp521r1(0x0019), x25519(0x001D), x448(0x001E), /* Finite Field Groups (DHE) */ ffdhe2048(0x0100), ffdhe3072(0x0101), ffdhe4096(0x0102), ffdhe6144(0x0103), ffdhe8192(0x0104), /* Hybrid Key Exchange Methods */ x25519_kyber768(TBD), secp384r1_kyber768(TBD), x25519_kyber512(TBD), secp256r1_kyber512(TBD), ..., /* Reserved Code Points */ ffdhe_private_use(0x01FC..0x01FF), ecdhe_private_use(0xFE00..0xFEFF), (0xFFFF) } NamedGroup;¶
We take the relatively simple "concatenation approach": the messages from the two or more algorithms being hybridized will be concatenated together and transmitted as a single value, to avoid having to change existing data structures. The values are directly concatenated, without any additional encoding or length fields; this assumes that the representation and length of elements is fixed once the algorithm is fixed. If concatenation were to be used with values that are not fixed-length, a length prefix or other unambiguous encoding must be used to ensure that the composition of the two values is injective and requires a mechanism different from that specified in this document.¶
Recall that in TLS 1.3 a KEM public key or KEM ciphertext is represented as a KeyShareEntry
:¶
struct { NamedGroup group; opaque key_exchange<1..2^16-1>; } KeyShareEntry;¶
These are transmitted in the extension_data
fields of KeyShareClientHello
and KeyShareServerHello
extensions:¶
struct { KeyShareEntry client_shares<0..2^16-1>; } KeyShareClientHello; struct { KeyShareEntry server_share; } KeyShareServerHello;¶
The client's shares are listed in descending order of client preference; the server selects one algorithm and sends its corresponding share.¶
For a hybrid key exchange, the key_exchange
field of a KeyShareEntry
is the concatenation of the key_exchange
field for each of the constituent algorithms. The order of shares in the concatenation is the same as the order of algorithms indicated in the definition of the NamedGroup
.¶
For the client's share, the key_exchange
value contains the concatenation of the pk
outputs of the corresponding KEMs' KeyGen
algorithms, if that algorithm corresponds to a KEM; or the (EC)DH ephemeral key share, if that algorithm corresponds to an (EC)DH group. For the server's share, the key_exchange
value contains concatenation of the ct
outputs of the corresponding KEMs' Encaps
algorithms, if that algorithm corresponds to a KEM; or the (EC)DH ephemeral key share, if that algorithm corresponds to an (EC)DH group.¶
[TLS13] requires that ``The key_exchange values for each KeyShareEntry MUST be generated independently.'' In the context of this document, since the same algorithm may appear in multiple named groups, we relax the above requirement to allow the same key_exchange value for the same algorithm to be reused in multiple KeyShareEntry records sent in within the same ClientHello
. However, key_exchange values for different algorithms MUST be generated independently.¶
Larger public keys and/or ciphertexts.
The HybridKeyExchange
struct in Section 3.2 limits public keys and ciphertexts to 2^16-1 bytes; this is bounded by the same (2^16-1)-byte limit on the key_exchange
field in the KeyShareEntry
struct. Some post-quantum KEMs have larger public keys and/or ciphertexts; for example, Classic McEliece's smallest parameter set has public key size 261,120 bytes. However, all defined parameter sets for Kyber have public keys and ciphertexts that fall within the TLS constraints.¶
Duplication of key shares.
Concatenation of public keys in the HybridKeyExchange
struct as described in Section 3.2 can result in sending duplicate key shares. For example, if a client wanted to offer support for two combinations, say "secp256r1+kyber512" and "x25519+kyber512", it would end up sending two kyber512 public keys, since the KeyShareEntry
for each combination contains its own copy of a kyber512 key. This duplication may be more problematic for post-quantum algorithms which have larger public keys. On the other hand, if the client wants to offer, for example "secp256r1+kyber512" and "secp256r1" (for backwards compatibility), there is relatively little duplicated data (as the secp256r1 keys are comparatively small).¶
Failures. Some post-quantum key exchange algorithms, including Kyber, have non-zero probability of failure, meaning two honest parties may derive different shared secrets. This would cause a handshake failure. Kyber has a cryptographically small failure rate; if other algorithms are used, implementers should be aware of the potential of handshake failure. Clients can retry if a failure is encountered.¶
This document defines four initial hybrids for use within TLS 1.3, as shown in Table 1, where the components x25519, secp384r1, secp256r1 are the existing named groups.¶
Hybrid name | Hybrid components | Named group |
---|---|---|
x25519_kyber512 | x25519, kyber512 | TBD |
secp256r1_kyber512 | secp256r1, kyber512 | TBD |
x25519_kyber768 | x25519, kyber768 | TBD |
secp384r1_kyber768 | secp384r1, kyber768 | TBD |
The intention is that the first two combinations (using kyber768) are for normal TLS sessions, while the latter two (using kyber512) are for sessions that have limits in record size or it is important to limit the total amount of communication.¶
For kyber512 and kyber768, this document refers to the same named parameter sets defined in the Round 3 submission of Kyber to NIST. That submission defines two variants for each parameter set based on the symmetric primitives used. This document uses the FIPS 202 variant (and not the "90s" variant); the FIPS 202 variant uses SHA-3 and SHAKE [NIST-FIPS-202] as its internal symmetric primitives.¶
The Kyber team has updated their documentation twice since submitting to Round 3 (these updates are labeled as version 3.0.1 and 3.0.2), however neither modifies the FIPS 202 variant of Kyber.¶
The listed kyber512, kyber768 components are the named parameter sets of the key exchange method Kyber [Kyber]. When it is used, the client selects an ephemeral private key, generates the corresponding public key, and transmits that (as a component) within its keyshare. When the server receives this keyshare, it extracts the Kyber public key, generates a ciphertext and shared secret. It then transmits the ciphertext (as a component) within its keyshare. When the client receives this keyshare, it extracts the Kyber ciphertext, and uses its private key to generate the shared secret. Both sides use their copy of the shared secret as a component within the hybrid shared secret.¶
IANA will assign identifiers from the TLS TLS Supported Groups section for the hybrid combinations defined in this document. These assignments should be made in a range that is distinct from the Elliptic Curve Groups and the Finite Field Groups ranges.¶
The shared secrets computed in the hybrid key exchange should be computed in a way that achieves the "hybrid" property: the resulting secret is secure as long as at least one of the component key exchange algorithms is unbroken. See [GIACON] and [BINDEL] for an investigation of these issues. Under the assumption that shared secrets are fixed length once the combination is fixed, the construction from Section 3.3 corresponds to the dual-PRF combiner of [BINDEL] which is shown to preserve security under the assumption that the hash function is a dual-PRF.¶
As noted in Section 2, KEMs used in the manner described in this document MUST explicitly be designed to be secure in the event that the public key is reused, such as achieving IND-CCA2 security or having a transform like the Fujisaki-Okamoto transform applied. Kyber has such security properties. However, some other post-quantum KEMs are designed to be IND-CPA-secure (i.e., without countermeasures such as the FO transform) are completely insecure under public key reuse; for example, some lattice-based IND-CPA-secure KEMs are vulnerable to attacks that recover the private key after just a few thousand samples [FLUHRER].¶
Public keys, ciphertexts, and secrets should be constant length. This document assumes that the length of each public key, ciphertext, and shared secret is fixed once the algorithm is fixed. This is the case for Kyber.¶
Note that variable-length secrets are, generally speaking, dangerous. In particular, when using key material of variable length and processing it using hash functions, a timing side channel may arise. In broad terms, when the secret is longer, the hash function may need to process more blocks internally. In some unfortunate circumstances, this has led to timing attacks, e.g. the Lucky Thirteen [LUCKY13] and Raccoon [RACCOON] attacks.¶
Furthermore, [AVIRAM] identified a risk of using variable-length secrets when the hash function used in the key derivation function is no longer collision-resistant.¶
Therefore, this specification MUST only be used with algorithms which have fixed-length shared secrets (after the variant has been fixed by the algorithm identifier in the NamedGroup
negotiation in Section 3.1).¶
These ideas have grown from discussions with many colleagues, including Christopher Wood, Matt Campagna, Eric Crockett, authors of the various hybrid Internet-Drafts and implementations cited in this document, and members of the TLS working group. The immediate impetus for this document came from discussions with attendees at the Workshop on Post-Quantum Software in Mountain View, California, in January 2019. Daniel J. Bernstein and Tanja Lange commented on the risks of reuse of ephemeral public keys. Matt Campagna and the team at Amazon Web Services provided additional suggestions. Nimrod Aviram proposed restricting to fixed-length secrets.¶